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Abstract: We calculate the thermal Euclidean correlators and the spectral functions of

the energy-momentum tensor for pure gauge theories, including at non-zero spatial mo-

mentum, at leading order in perturbation theory. Our goal is to improve the extraction of

transport properties from Euclidean correlators that are computable in lattice QCD. Based

on our results and the predictions of hydrodynamics for the structure of the spectral func-

tions at low frequencies, we show that the shear and bulk viscosities can advantageously be

extracted from the Euclidean correlators of the conserved charges, energy and momentum,

at small but non-vanishing spatial momentum. The spectral functions in these channels are

free of the ultraviolet ω4 term which represents a large background to the thermal physics

encoded in the correlators of the fluxes.
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1. Introduction

The particles produced in RHIC heavy-ion collisions exhibit sizeable elliptic and radial

flow [1 – 4]. This is a signature of collective behavior, which the equations of ideal hydro-

dynamics have been able to describe quite successfully [5 – 7]. The leading corrections in a

gradient expansion of flow velocities is parametrized by shear and bulk viscosity, η and ζ.

Detailed viscous relativistic hydrodynamics calculations [8 – 13] find that the experimental

data excludes a shear viscosity to entropy density ratio larger than about 0.3, in agreement

with early rough estimates [14]. This would make the substance created an exceptionally

good fluid [15], and it is therefore of primary interest to improve our knowledge of the

transport coefficients of the quark-gluon plasma.

Theoretically, the transport coefficients can be extracted from the imaginary part of a

retarded two-point correlation function; this imaginary part is called the spectral function

and is denoted by ρ(ω). This is the content of the Kubo formulas [16]. By analytic

continuation, the spectral function is also related to Euclidean correlators CE [17, 18],

which are functions of Euclidean time x0, spatial momentum q and temperature T , by

CE(x0,q, T ) =

∫ ∞

0
dωρ(ω,q, T )

coshω(x0 − 1
2T )

sinh ω
2T

. (1.1)
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The spectral functions are odd in ω and have everywhere the same sign as ω. Since

viscosities parametrize the dissipation of momentum, the relevant operators are elements

of the energy-momentum tensor Tµν . Because the temperatures reached at RHIC are not

much larger than twice the critical temperature Tc where a gas of hadrons rapidly crosses

over to a system with many more degrees of freedom (see [19] and ref. therein), perturbative

methods [20 – 24] are not directly applicable. They can however tell us about the asymptotic

high T behavior of the viscosities and the associated spectral functions. They also allow us

to familiarize ourselves with the intricate kinematics that arise at non-zero temperature and

spatial momentum, one of the objectives of this work. Finite-momentum meson spectral

functions were investigated analytically in [25].

Lattice calculations of viscosities [26 – 28, 17] have so far mostly focused on the Eu-

clidean correlators of T12 for the shear viscosity, and Tii (or Tµµ) for the bulk viscosity.

Indeed the Kubo formulas read in these cases

η(T ) = π lim
ω→0

ρ12,12(ω,0, T )

ω
, (1.2)

ζ(T ) =
π

9
lim
ω→0

ρii,jj(ω,0, T )

ω
, (1.3)

where ρµν,ρσ corresponds to 〈TµνTρσ〉. As we shall review in section 3, hydrodynamics,

as an effective theory describing low-frequency phenomena around equilibrium, predicts

the functional form of the spectral functions in these channels, including at small but

non-vanishing q.

Leaving aside the problem of determining the spectral function given the Euclidean

correlator, a particular difficulty in this approach is that the spectral functions grow as ω4

(times a power series in αs) at large frequencies. This buries the contribution from the small

ω region under a much larger contribution (by a factor of at least five) from ultraviolet

modes. The latter contribution is almost temperature independent and therefore does

not advance in any way our understanding of thermal physics. Given that the Euclidean

correlators are determined by Monte-Carlo methods and carry statistical errors, this is a

significant drawback. The difficulty is far more severe than in studies of the charmonium

spectral functions [29 – 31], or calculations of the electromagnetic conductivity [32], because

the spectral function only grows as ω2 for the vector current ψ̄γiψ.

Methods to subtract the ultraviolet contribution to the Euclidean correlator, and hence

to enhance the sensitivity of the lattice observables to the low-frequency region described

by hydrodynamics, have been proposed and implemented [18]. One of these methods

(subtracting the T = 0 spectral function) has the virtue of removing the ω4 contribution

completely, by contrast with a perturbative order-by-order subtraction. The drawback is

that positivity of the integrand in eq. (1.1) is given up, and a large part of the signal is

lost in the difference, an unfavorable situation from the numerical point of view.

Here, based on the exact Ward identities that follow from the conservation of the

energy-momentum tensor, we show that the spectral function of the energy density operator

with non-vanishing spatial momentum goes to a constant as ω → ∞. Similarly, the two-

point function of the momentum density operator grows only as ω2. This is confirmed by

– 2 –
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our perturbative calculation. These Euclidean correlators are therefore far more sensitive

to the thermal effects than the correlators of the fluxes. Yet provided q is sufficiently small,

their low-frequency region is still described by hydrodynamics, and therefore the shear and

bulk viscosity can be extracted from them.

We collect leading perturbative results on the Euclidean correlators and spectral func-

tions in section 2, and discuss in section 3 the interplay of the perturbative predictions with

the hydrodynamics predictions to propose a new way to extract shear and bulk viscosity

from Euclidean correlators.

2. Perturbative calculation

The Euclidean energy-momentum tensor for SU(Nc) gauge theories reads

Tµν(x) = θµν(x) +
1

4
δµν θ(x) (2.1)

θµν(x) =
1

4
δµνF

a
ρσF

a
ρσ − F a

µαF
a
να (2.2)

θ(x) =
β(g)

2g
F a

ρσF
a
ρσ (2.3)

β(g) = −b0g3 + . . . , b0 =
11Nc

3(4π)2
. (2.4)

In the U(1) case, the summation over the adjoint index a is trivial and of course β(g) = 0.

In contrast with Minkovsky space, T0i = θ0i is an antihermitian operator. In particular,

〈T0i(x)T0i(0)〉 < 0 for x 6= 0, and Pj = i
∫

d3xT0j(x) is the usual momentum operator, for

instance Pj|q〉 = qj |q〉 for a one-particle state.

In view of the form of the energy-momentum tensor, we consider now the connected

correlators of the field strength tensor and those of the field strength tensor squared, at

leading order in perturbation theory. The expectation values obtained in that approxima-

tion are denoted by 〈. . .〉0 and throughout this paper we keep only connected diagrams.

The effect on spectral functions of using Hard-Thermal Loop resummed perturbation the-

ory [33] in the region ω < T is beyond the scope of this work. Nevertheless our results are

perfectly physical, since they are exact in the U(1) case.

In Feynman gauge, we have

〈Fµν(x)Fαβ(y)〉0 = dA φµναβ(x− y) , (2.5)

φµναβ(x) ≡ δνβfµα(x) + δµαfνβ(x) − δµβfνα(x) − δναfµβ(x) , (2.6)

fµα(x) ≡ T
∑

p0

∫

d3p

(2π)3
ei(p0x0+p·x)

p2
0 + p2

pα pµ . (2.7)

One then easily obtains

〈F a
µν(x)F a

ρσ(x) F b
αβ(y)F b

γδ(y)〉0 = dA

[

φµναβ(x−y)φρσγδ(x−y)+φµνγδ(x−y)φρσαβ(x−y)
]

.

(2.8)
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The color factor is dA ≡ N2
c − 1 for SU(Nc) and 1 for U(1). To study mixed correlators

(which are functions of (x0,p)), we introduce the spatial Fourier transform of φµναβ(x),

φ̃µναβ(p, x0) =
∫

d3xφµναβ(x) eip·x. Then

∫

d3y eiq·y 〈F a
µν(0)F a

ρσ(0) F b
αβ(x0,y)F b

γδ(x0,y) 〉0 (2.9)

= dA

∫

d3p

(2π)3

[

φ̃µναβ(p, x0)φ̃ρσγδ(−(p+q), x0)+φ̃µνγδ(p, x0)φ̃ρσαβ(−(p+q), x0)
]

.

The integral is worked out in appendix A. The results are of course gauge-invariant. In the

next two subsections, we present the results in a number of channels of physical interest.

Throughout this section, we align the spatial momentum with the z-axis, q = qê3, q ≥ 0.

Since the spectral function is odd in ω, we also choose ω ≥ 0 without loss of generality.

The most general results are given at the end of the section, however we find it useful to

give the explicit form in the simpler cases of zero temperature or zero momentum.

2.1 Zero temperature

At T = 0 and zero spatial momentum, by dimensional analysis, the correlation functions

at tree-level all fall off as 1/x5
0. With finite-momentum and for x0 > 0,

∫

d3x eiq·x〈T13(x)T13(0)〉0 =
dAe

−qx0

5(4π)2x5
0

(qx0 + 2) (q2x2
0 + 3qx0 + 6) , (2.10)

ρ13,13(ω, q) =
dAθ(ω − q)

10(4π)2
ω2(ω2 − q2) , (2.11)

∫

d3x eiq·x〈T12(x)T12(0)〉0 =
4dAe

−qx0

5(4π)2x5
0

(3 + qx0 + q2x2
0) (2.12)

ρ12,12(ω, q) =
dAθ(ω − q)

10(4π)2
(ω2 − q2)2 , (2.13)

∫

d3x eiq·x〈θ33(x)θ33(0)〉0 =
2dAe

−qx0

15(4π)2x5
0

(24 + 24qx0 + 12q2x2
0 + 4q3x3

0 + q4x4
0), (2.14)

ρ33,33(ω, q) =
2dAθ(ω − q)

15(4π)2
ω4, (2.15)

∫

d3x eiq·x〈θ(x)θ(0)〉0 =

(

11αsNc

6π

)2 2dAe
−qx0

(4π)2x5
0

(3 + 3qx0 + q2x2
0) , (2.16)

ρθ,θ(ω, q) =

(

11αsNc

6π

)2 dAθ(ω − q)

4(4π)2
(ω2 − q2)2. (2.17)

∫

d3x eiq·x〈θ00(x)θ00(0)〉0 =
2dAq

4e−qx0

15(4π)2x0
(2.18)

ρ00,00(ω, q) =
2dAθ(ω − q)

15(4π)2
q4. (2.19)
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2.2 Finite temperature

The q = 0 correlation functions of interest are

∫

d3x 〈 θ00(0) θ00(x) 〉0 =
4π2dAT

5

15
, (2.20)

∫

d3x 〈 θ(0) θ00(x) 〉0 = 0 , (2.21)

∫

d3x 〈 θ(0) θ(x) 〉0 =

(

11αsNc

6π

)2 16dAT
5

π2

(

f(τ) − π4

60

)

, (2.22)

∫

d3x 〈 θ12(0) θ12 〉0 =
32dAT

5

5π2

(

f(τ) − π4

72

)

, (2.23)

∫

d3x 〈 θ11(0) θ11 〉0 =
128dAT

5

15π2

(

f(τ) − π4

96

)

, (2.24)

where τ = 1 − 2Tx0 and

f(τ) =

∫ ∞

0
ds s4

cosh2 τs

sinh2 s
=
π4

60
+

3

4

∑

n≥1

n

(n− τ)5
+

n

(n + τ)5
. (2.25)

The two point function of
∫

d3xT00(x) is time-independent, as expected for a conserved

charge. The spectral functions in the tensor and scalar channels read (see for instance [34,

26])

ρ12,12(ω,0, T ) =
dA

10(4π)2
ω4

tanh ω
4T

+

(

2π

15

)2

dAT
4 ωδ(ω) (2.26)

ρθ,θ(ω,0, T ) =
dA

4(4π)2

(

11αsNc

6π

)2 ω4

tanh ω
4T

. (2.27)

2.2.1 Finite momentum

For a polynomial P , we define

I([P ], ω, q, T ) = θ(ω − q)

∫ 1

0
dz

P (z) sinh ω
2T

cosh ω
2T − cosh qz

2T

+ θ(q − ω)

∫ ∞

1
dz

P (z) sinh ω
2T

cosh qz
2T − cosh ω

2T

.

(2.28)

Then the spectral functions read

ρ13,13(ω, q, T ) =
dA

8 (4π)2
ω2(ω2 − q2) I([1 − z4], ω, q, T ) , (2.29)

ρ12,12(ω, q, T ) =
dA

32 (4π)2
(ω2 − q2)2 I([1 + 6z2 + z4], ω, q, T ) , (2.30)

ρ33,33(ω, q, T ) =
dA

4 (4π)2
ω4 I([(1 − z2)2], ω, q, T ) , (2.31)

ρθ,θ(ω, q, T ) =

(

11αsNc

6π

)2 dA

4 (4π)2
(ω2 − q2)2 I([1], ω, q, T ) , (2.32)

ρ00,00(ω, q, T ) =
dA

4 (4π)2
q4 I([(1 − z2)2], ω, q, T ) , (2.33)

– 5 –
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Figure 1: The function 1

dAT 4 [ρ(ω,q, T )/ tanh(ω/2T )−ρ(ω,q, 0)] for q = πT . For the trace anomaly

θ, the factor (11αsNc/6π)2 has been dropped.

−ρ01,01(ω, q, T ) =
dA

8 (4π)2
q2(ω2 − q2) I([(1 − z4)], ω, q, T ) , (2.34)

−ρ03,03(ω, q, T ) =
dA

4 (4π)2
q2ω2 I([(1 − z2)2], ω, q, T ) . (2.35)

One finds that

I([1], ω, q, T ) = −ω
q
θ(q − ω) +

2T

q
log

sinh(ω + q)/4T

sinh |ω − q|/4T (2.36)

and hence the trace anomaly correlator can be expressed in terms of elementary functions.

The integrals with z2 and z4 in the numerator can be expressed in terms of polylogarithms,

explicit formulas are given in appendix C. A few spectral functions are displayed on figure 1.

3. Physics discussion

At small momentum and frequency, the expression for the spectral functions of the mo-

mentum densities are predicted by hydrodynamics (see [35] for an explicit derivation),

−ρ01,01(ω,q)

ω

ω,q→0∼ η

π

q2

ω2 + (ηq2/(Ts))2
, (3.1)

−ρ03,03(ω,q)

ω

ω,q→0∼
4
3η + ζ

π

ω2q2

(ω2 − v2
sq

2)2 + (ωq2(4
3η + ζ)/(Ts))2

, (3.2)

where s is the entropy density, vs is the velocity of sound and q = qê3.
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Based on the fact the matrix elements of ∂µT
µν vanish between any two on-shell states,

the Euclidean correlators of the charges and those of the fluxes are related in a simple way.

We emphasize that these relations are exact, since they derive from a Ward identity. In

terms of the spectral functions they read (q = qê3)

ω4 ρ00,00(ω,q) = q4ρ33,33(ω,q) (3.3)

−ω2 ρ01,01(ω,q) = q2 ρ13,13(ω,q) (3.4)

−ω2 ρ03,03(ω,q) = q2 ρ33,33(ω,q). (3.5)

These relations are in particular satisfied by our treelevel expressions, eq. (2.29)–(2.35).

Note that the minus signs on the right-hand side of eq. (3.4)–(3.5) are absent in Minkovsky

space (they come from the definition of T0k itself, see the remark at the beginning of

section 2).

Equations (3.4)–(3.5) and (3.1)–(3.2) can be combined to obtain (1.2) and (1.3), which

have so far been the basis of the calculation of shear and bulk viscosity using lattice Monte-

Carlo techniques [26 – 28, 17]. In that strategy, the momentum q is set to zero at the outset,

and ω is sent to zero at the end.

However, in view of eq. (3.1)–(3.2), the shear and bulk viscosity can be extracted from

the low-freqency behavior of the spectral functions for the four charge densities T0µ, as long

as q 6= 0. The advantage of using these correlators is that the ultraviolet contributions

are highly suppressed compared to the correlators of the spatial components. We may

illustrate this point by two numerical examples.

In eq. (2.26), relevant to shear viscosity, the ω4/ tanh ω
4T term contributes for 86% to

the Euclidean correlator at t = 1/2T . By contrast, in the ρ01,01 channel for q = πT/2, the

contributions to CE(x0 = 1/2T )/(dAT
5) coming from ω > q and ω < q are respectively

≈ 0.04 and 0.6, assuming the treelevel form (eq. 2.34) in the first region and eq. (3.1) with

s = 3
4sSB = 1

15dAπ
2T 3 and η/s = 1/4π in the second.

In the energy density channel, the increase in sensitivity to the low-frequency region

of the spectral function is even more dramatic: for q = πT/2, the contribution to CE(x0 =

1/2T )/(dAT
5) from ω > q is merely ≈ 0.01 based on eq. (2.33), while the sub-threshold

contribution is about 1.9 for s = 3
4sSB, v2

s = 1
3 , η/s = 1/4π and ζ = 0. These values are

inspired by the strongly coupled N = 4 SU(Nc) SYM gauge theory, which can be studied

by analytic AdS/CFT methods (see for instance [36] and ref. therein).

One of the key issues in practice is to achieve sufficiently small q for the hydrodynamics

prediction to be valid below threshold. One will want to reach q < πT/2 and check this

explicitly. Since q = 2π/L is the smallest momentum available in a periodic box, this

requires simulating in rather large spatial volumes. Approaching a second order phase

transition, it may become impractical to reach sufficiently small momenta. Anisotropic

lattices [37, 18] can help to achieve large physical volumes while keeping discretization errors

under control. From the algorithmic point of view, having a non-zero spatial momentum

is a particularly favorable situation for the multi-level algorithm [38 – 40], since it allows

the ultraviolet fluctuations to be tamed very efficiently. Indeed non-perturbative, non-zero

momentum correlators of the momentum fluxes were presented with 1% precision in [18].

– 7 –
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In the case of the vector current ψ̄γµψ, it may also be profitable to exploit the cor-

relator of the charge density with non-zero momentum. Non-zero momentum correlators

of the current have been computed with good precision [41], exploiting twisted boundary

conditions to scan low momenta more easily.
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A. Calculation of Euclidean correlators

In this appendix we derive a form of the Euclidean correlators which is well suited for

accurate numerical evaluation. We start with 〈T12(0)T12(x)〉, and then give results for

other channels treated in the same way. The orientation of the momentum is specified by

q = qêi, i = 1, 2, 3. The color factor dA is omitted.

A.1 The 〈T12(0)T12(x)〉 correlator

〈T12(0)T12(x)〉 = 〈(F10F20)(0) (F10F20)(x)〉 + 〈(F13F23)(0) (F13F23)(x)〉
+2 〈(F10F20)(0) (F13F23)(x)〉. (A.1)

Explicitly, the tensor φ̃µναβ reads

φ̃µναβ(p, x0) =
1

L0

∑

p0

eip0x0

p2
0 + p2

[

δνβ pµ pα + δµα pν pβ − δµβ pν pα − δνα pµ pβ

]

.

In the T → 0 limit of course one can make the substitution 1
L0

∑

p0
→

∫ dp0

2π . Defining

A =
1

L2
0

∑

p0,q0

∫

d3p

(2π)3
(p2

1 + p2
0)

eip0x0

p2
0 + p2

((p2 + q2)
2 + q20)

eiq0x0

q20 + (p + q)2
, (A.2)

B =
1

L2
0

∑

p0,q0

∫

d3p

(2π)3
p1p2

eip0x0

p2
0 + p2

(p1 + q1)(p2 + q2)
eiq0x0

q20 + (p + q)2
, (A.3)

C =
1

L2
0

∑

p0,q0

∫

d3p

(2π)3
(p2

1 + p2
3)

eip0x0

p2
0 + p2

[(p2 + q2)
2 + (p3 + q3)

2]
eiq0x0

q20 + (p + q)2
, (A.4)

D =
−1

L2
0

∑

p0,q0

∫

d3p

(2π)3
p0p3

eip0x0

p2
0 + p2

q0(p3 + q3)
eiq0x0

q20 + (p + q)2
, (A.5)

we have
∫

d3x eiq·x〈F10F20)(0) (F10F20)(x)〉 = A + B , (A.6)
∫

d3x eiq·x〈F13F23)(0) (F13F23)(x)〉 = B + C , (A.7)
∫

d3x eiq·x〈F10F20)(0) (F13F23)(x)〉 = D . (A.8)

– 8 –
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Using the Poisson summation formula, we obtain

A =
1

4

∑

m,n∈Z

∫

d3p

(2π)3
(p2

1−p2) ((p2+q2)
2−(p+q)2)

|p| |p+q| e−|p||x0+mL0| e−|p+q||x0+nL0| , (A.9)

B =
1

4

∑

m,n∈Z

∫

d3p

(2π)3
p1p2 (p1 + q1)(p2 + q2)

|p| |p + q| e−|p||x0+mL0| e−|p+q||x0+nL0| , (A.10)

C =
1

4

∑

m,n∈Z

∫

d3p

(2π)3
(p2

1+p2
3) [(p2+q2)

2+(p3+q3)
2]

|p| |p+q| e−|p||x0+mL0| e−|p+q||x0+nL0| , (A.11)

D =
1

4

∑

m,n∈Z

sm

(x0

L0

)

sn

(x0

L0

)

∫

d3p

(2π)3
p3(p3 + q3) e

−|p||x0+mL0| e−|p+q| |x0+nL0| , (A.12)

where

sn(x) ≡ sign(x+ n) . (A.13)

Integrating in spherical coordinates leads to

∫

d3x eiq·x〈T12(0)T12(x)〉 =
q5

64π2

∑

m,n∈Z

∫ ∞

0
k3dk e−|x0+mL0|k ×

×
{

k
√

k2 + 1 (JA + 2JB + JC)

(

q|x0 + nL0|
√

k2 + 1,
2k

k2 + 1
, k

)

(A.14)

+2(k2 + 1) sm

(

x0

L0

)

sn

(

x0

L0

)

ID

(

q|x0 + nL0|
√

k2 + 1,
2k

k2 + 1
, k

) }

,

where

JA,B,C(x,A, k) =

∫ A

−A

dy√
1 + y

e−x
√

1+y PA,B,C(y/A, k) (A.15)

ID(x,A, k) =

∫ A

−A
dy e−x

√
1+y PD(y/A, k). (A.16)

Via the change of variables u =
√

1 + y, these integrals can be obtained in terms of the

function

g(x,A) ≡ 1

x

(

e−x
√

1−A − e−x
√

1+A
)

. (A.17)

We have

JA,B,C(x,A, k) = 2PA,B,C

(

A−1

(

d2

dx2
− 1

)

, k

)

g(x,A) (A.18)

ID(x,A, k) = −2
d

dx
PD

(

A−1

(

d2

dx2
− 1

)

, k

)

g(x,A) (A.19)

Note that
√

1 ±A = |k±1|√
k2+1

for A = 2k
k2+1

.

One then obtains the correlator in the form
∫

d3x eiq·x〈T12(0)T12(x)〉=
q5

π2

∑

n,m∈Z

g

(

[Π]; sm

(

x0

L0

)

sn

(

x0

L0

)

, q|x0 +mL0|, q|x0+nL0|
)

,

(A.20)
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where

g([Π]; s, x, y) =
e−x Π(s, x, y) − e−y Π(s, y, x)

(x2 − y2)5
= g([Π]; s, y, x) (A.21)

and the appropriate polynomials Π will be specified below for a few cases of interest. The

function g will always be finite at x = y, and we give the first two terms in the expansion

around this point, which is useful when implementing expression (A.20) numerically. Since

the series in n and m are exponentially convergent, only a few terms are needed to reach,

say, a precision of 10−6.

Consider the case q = (q, 0, 0), q ≥ 0. Relabelling the p-coordinates p1 → p3, p3 → p2,

p2 → p1 in eq. (A.12) before going to spherical coordinates, we obtain,

PA(y, k) = (1 − y2)

(

y2 +
4

k
y +

2

k2
+ 1

)

, (A.22)

PB(y, k) = y (1 − y2)

(

y +
1

k

)

, (A.23)

PC(y, k) = 1 − y4 , (A.24)

PD(y, k) = 1 − y2 , (A.25)

and from there

2Πê1

12,12(s, x, y) = 4608 + x(6 + x)(768 + x(240 + x(72 + x(10 + x)))) (A.26)

−4sx(48 + x(48 + x(12 + x)))y

−(96 + x(96 + x(120 + x(32 + 3x))))y2

+8sx(6 + x)y3 + (6 + x)(−2 + 3x)y4 − 4sy5 − y6 ,

g

(

[Πê1

12,12]; s, x+
1

2
ǫ, x− 1

2
ǫ

)

=
e−x

240x5

{

x3(2 + s)+3(7 + 5s)+3x(7 + 5s)+x2(9 + 6s)

+
ǫ2

56

(

(39+21s+x3(4+s)+3x(13+7s)+x2(17+8s))
)

+O(ǫ4)

}

. (A.27)

In eq. (A.27), we have defined g by continuity.

For the case q = (0, 0, q), q ≥ 0, we obtain

PA(y, k) =
1

4
y4 +

2

k
y3 +

(

1

k2
+

3

2

)

y2 +
2

k
y +

1

k2
+

1

4
, (A.28)

PB(y, k) =
1

4
(1 − y2)2 , (A.29)

PC(y, k) = PA(y) , (A.30)

PD(y, k) = 2y

(

y +
1

k

)

, (A.31)
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and further

Πê3

12,12(s, x, y) = −576 − x(4 + x)(144 + x(48 + x(24 + x(6 + x))))(A.32)

+2sx(96 + x(96 + x(48 + x(11 + x))))y

+(−48 + x(−48 + x(−48 + (−4 + x)x)))y2

−4sx2(5 + x)y3 + x(14 + x)y4 + 2s(−1 + x)y5 − y6 .

g

(

[Πê3

12,12]; s, x+
1

2
ǫ, x− 1

2
ǫ

)

=
e−x

240x5

{

21 + x(21 + x(9 + x(2 + x))) (A.33)

+s(15 − x(−15 + (−1 + x)x(3 + x)))

+
ǫ2

56

(

69 − 2x3(−1 + s) − x4(−1 + s) + 63s

+x2(25 + 19s) + x(69 + 63s)
)

+ O(ǫ4)

}

.

Note that the polynomials PA,B,C,D(y, k) all have the symmetry PA,B,C,D(−y,−k) =

PA,B,C,D(y, k).

A.2 〈T11T11〉 with momentum along x direction

For
∫

d3xeiq·x〈T11(0)T11(x)〉, the polynomial is

−Πê1

11,11(s, x, y) = 4608 + x(4608 + x(2112 + x(576 + x(108 + x(14 + x)))))

+sx(2 + x)(120 + x(60 + x(12 + x)))y

−(192+x(192+x(24+x(4+x))))y2−2sx(18+x(8+x))y3

−(−12 + x(10 + x))y4 + s(2 + x)y5 + y6 , (A.34)

g

(

[Πê1

11,11]; s, x+
1

2
ǫ, x− 1

2
ǫ

)

=
e−x

480x5

{

66(1 + x) + 2x2(15 + x(4 + x)) + (A.35)

+s(30 + x(30 + x(15 + x(5 + x))))

+
ǫ2

56

(

138+138x+x4(2+s)+x3(8+5s)+x2(54+5s)
)

+O(ǫ4)
}

.

A.3 Scalar correlator with non-zero momentum

For 1
4

∑

µ<ν,ρ<σ

∫

d3x eiq·x〈F 2
µν(0)F 2

ρσ(x)〉, the polynomial is

−Πê3

θ,θ(s, x, y) = x4(12 + x(6 + x)) − 2sx3(24 + x(9 + x))y (A.36)

−x2(−72 + (−12 + x)x)y2 + 4sx(−12 + x(3 + x))y3

−(−12 + x(18 + x))y4 − 2s(−3 + x)y5 + y6.

g

(

[Πê3

θ,θ]; s, x+
1

2
ǫ, x− 1

2
ǫ

)

=
e−x

240x5

{

− x4(−1+s) + 45(1+s) + 45x(1+s) + 15x2(1+s)

+
ǫ2

56

(

− x4(−1 + s) + 105(1 + s) + 105x(1 + s) + 35x2(1 + s)
)

+ O(ǫ4)

}

. (A.37)
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B. Calculation of spectral functions

In this appendix, we show how to obtain eq. (2.29)–(2.35) in the case of the 〈T12T12〉
correlator. Other cases can be treated in exactly the same way. In this section q is

understood to be in units of 2T . Using the propagator in the mixed representation,

1

L0

∑

p0

eip0x0

p2
0 + p2

=
1

2|p|
cosh |p|(1

2L0 − x0)

sinh 1
2 |p|L0

, (B.1)

we obtain (τ = 1 − 2Tx0)

A,B, C =
1

π2L5
0

∫ ∞

0
p4dp

∫ 1

−1
dx

p

p2 + q2 + 2pqx
PA,B,C

(

x,
p

q

)

(B.2)

cosh(p+
√

p2 + q2 + 2pqx)τ + cosh(p−
√

p2 + q2 + 2pqx)τ

cosh(p+
√

p2 + q2 + 2pqx) − cosh(p−
√

p2 + q2 + 2pqx)
.

For the term proportional to cosh(p +
√

p2 + q2 + 2pqx)τ , we do the change of variables

p = p2−q2

2(k+qx) , which brings this expression to the desired form cosh(kτ) on the integration

interval k|∞q .

For the cosh(p −
√

p2 + q2 + 2pqx)τ term, we choose p = k2−q2

2(qx−k) , which achieves the

same on the integration interval k|qqx. We then notice that if F(−x,−k, q) = F(x, k, q),

∫ 1

−1
dx

∫ q

qx
dkF(x, k, q) =

∫ q

0

∫ 1

−1
F(x,−k, q).

One therefore finds that the first term determines the spectral function above the threshold

q, while the second determines it below q. We write

ρ(ω, q, T ) = ρ<(ω, q, T ) + ρ>(ω, q, T ), (B.3)

where the first term vanishes for ω > q and the second for ω < q.

After some algebra,

ρA,B,C,>(2kT, 2qT, T ) =
T 4θ(k − q) sinh k(k2 − q2)5

64π2
(B.4)

∫ 1

−1
dx
PA,B,C(x,

k2−q2

2q(k+qx))

(k + qx)6
1

cosh k − cosh q q+kx
k+qx

.

and after the further change of variables x = kz−q
k−qz , we obtain

ρA,B,C,>(2kT, 2qT, T ) =
T 4θ(k − q) sinh k

64π2
(B.5)

∫ 1

−1

dz(k − qz)4

cosh k − cosh qz
PA,B,C

(

kz − q

k − qz
,
k − qz

2q

)

.

After the change of variables p = p(k) but before the change of variables x = x(z),

the sub-threshold part, ρ<(2kT, 2qT, T ), has the same expression as ρ>. However, in
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order to perform the change of variables x(z), the integral must first be split,
∫ 1
−1 dx =

∫ −k/q
−1 dx +

∫ 1
−k/q dx. These integration intervals are mapped to the z-integrals

∫ −1
−∞ and

∫ ∞
1 . Because dx

dz < 0 on these two intervals, a minus sign relative to ρ> appears. One thus

finds

ρA,B,C,<(2kT, 2qT, T ) =
T 4θ(q − k) sinh k

64π2

(
∫ −1

−∞
+

∫ ∞

1

)

(B.6)

dz(k − qz)4

cosh qz − cosh k
PA,B,C

(

kz − q

k − qz
,
k − qz

2q

)

.

For the contribution

D =
T 5

π2

∫ 1

−1

∫ ∞

0
dpp4PD(x,

p

q
)
cosh(p+

√

p2 + q2 + 2pqx)τ − cosh(p−
√

p2 + q2 + 2pqx)τ

cosh(p+
√

p2 + q2 + 2pqx) − cosh(p−
√

p2 + q2 + 2pqx)
(B.7)

we follow exactly the same steps as for A,B, C and find

ρD,>(2kT, 2qT, T ) =
T 4θ(k − q) sinh k

64π2
(B.8)

∫ 1

−1

dz(k − qz)2(k2 − q2z2)

cosh k − cosh qz
PD

(

kz − q

k − qz
,
k − qz

2q

)

.

For the sub-threshold part (which includes the minus sign in the numerator of eq. (B.7)) we

find the same expression as for ρ> before the change of variables x(z). Therefore, again, in

the final expression ρ< has a relative minus sign as well as the complementary integration

range as compared to ρ>,

ρD,<(2kT, 2qT, T ) =
T 4θ(q − k) sinh k

64π2

(
∫ −1

−∞
+

∫ ∞

1

)

(B.9)

dz(k − qz)2(k2 − q2z2)

cosh qz − cosh k
PD

(

kz − q

k − qz
,
k − qz

2q

)

.

Finally, in view of the symmetry P (−y,−k) = P (y, k) of the relevant polynomials,
∫ 1
−1 can

be replaced by 2
∫ 1
0 and

∫ −1
−∞ +

∫ ∞
1 by 2

∫ ∞
1 .

C. The spectral function in terms of polylogarithms

Polylogarithms are defined by the series Lin(z) =
∑

k≥1
zk

kn and analytic continuation

thereof. The integrals appearing in the spectral function are given as follows in terms

of these special functions:

q3 I([z2]; 2Tw, 2Tq, T ) = −q2
(

(log(1 − eq−w) − log(ew+q − 1)
)

(C.1)

−2q
(

Li2(e
q−w) − Li2(e

w+q)
)

+ 2
(

Li3(e
q−w) − Li3(e

w+q)
)

+iπq2 − 1

3
(1 + θ(q − w))

(

w3 − 2π2w + 3iπw2
)

q5 I([z4]; 2Tw, 2Tq, T ) = −q4
(

log(1 − eq−w) − log(eq+w − 1)
)

(C.2)
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−4q3
(

Li2(e
q−w) − Li2(e

w+q)
)

+ 12q2
(

Li3(e
q−w) − Li3(e

q+w)
)

−24q
(

Li4(e
q−w) − Li4(e

q+w)
)

+ 24
(

Li5(e
q−w) − Li5(e

q+w)
)

+iπq4 − 1

15
(1 + θ(q − w))

(

3w5 − 20π2w3 − 8π4w + 15iπw4
)

The integral with z0 in the numerator can be expressed in terms of elementary functions,

see eq. (2.36). Hence in all cases the expressions on the left and on the right of the threshold

differ by a polynomial in ω. In order to simplify expressions eq. (C.1) and (C.2), we have

used the identities

Li5(e
−w) − Li5(e

w) =
w5

120
− π2

18
w3 − π4

45
w +

iπ

24
w4 (C.3)

Li3(e
−w) − Li3(e

w) =
w3

6
− π2

3
w +

iπ

2
w2 . (C.4)
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